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Abstract

At the microlevel, comparative public opinion data are abundant. But at the macrolevel – the

level where many prominent hypotheses in political behavior are believed to operate – data are

scarce. In response, this paper develops a Bayesian dynamic latent trait modeling framework

for measuring smooth country-year panels of public opinion even when data are fragmented

across time, space, and survey item. Six models are derived from this framework, applied to

opinion data on support for democracy, and validated using tests of internal, external, construct,

and convergent validity. The best model is reasonably accurate, with predicted responses that

deviate from the true response proportions in a held-out test dataset by six percentage points. In

addition, the smoothed country-year estimates of support for democracy have both construct

and convergent validity, with spatiotemporal patterns and associations with other covariates

that are consistent with previous research.



1. Introduction

Social scientists are awash in public opinion data. Over a dozen cross-national survey projects are

now in existence, regularly asking nationally-representative samples in all continents and regions

their opinions on a diverse range of social and political topics. Few countries haven’t been surveyed

at one time or another, and many countries have been polled numerous times, sometimes by several

of these survey projects. At the dawn of cross-national public opinion research, when Almond and

Verba (1963) completed their pioneering five-country study, researchers could hardly have dreamed

of such a vast trove of public opinion survey data.

Yet, by another standard, public opinion data are scarce. Many theories of political be-

havior propose country-level relationships between aggregate opinion and political outcomes. For

example, the theory of social capital proposes that social trust bolsters the quality of governance

(Putnam 1993); the literature on policy-making argues that preferences shape policy choices (Stim-

son 1991); scholars of political tolerance claim that intolerance leads to the repression of dissent

(Sullivan, Piereson, and Marcus 1982); and studies of democratization hypothesize that support

for democracy helps sustain a democratic regime (Lipset 1959). When aggregated to the country

level, however, a typical survey sample of one to two thousand respondents diminishes to a single

data point. Thus, although we may have millions of respondents’ opinions on a particular topic, we

might only have a few hundred nationally-aggregated opinions. While such a quantity of aggre-

gate opinion data may be sufficient to assemble a cross-section of countries, comparing Sweden to

Slovakia to Somalia at one point in time does not allow us to test the dynamic, causal hypotheses

that animate much of our research.

Instead, the fact that several cross-national public opinion survey projects have been run-

ning since the 1990s, if not before, offers a tantalizing possibility of measuring a panel of public

opinion that varies across both space and time. Such country-year panels of public opinion would

not only be of descriptive interest, they would also allow scholars to incorporate public opinion in

studies of comparative political behavior and comparative political economy; in some cases, for
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the first time.

Unfortunately, however, aggregate public opinion data are not distributed neatly or evenly

across space and time. Cross-national surveys are clustered in certain places and times, with frag-

mented time series and large spatial gaps. To make matters considerably worse, major public

opinion concepts are typically measured in multiple ways, with the wording of questions or the

nature of response sets varying widely, both within and across survey projects. Any analyst seek-

ing to assemble a country-year panel of aggregate public opinion would thus appear to have to rely

only on a single survey question. As a consequence, any panel that is assembled out of available

data will be highly fragmented, with sparse coverage over space and time.

This paper proposes a method for estimating smooth panels of aggregate public opinion

using all available survey data. The idea is to harness existing data to estimate latent country-year

opinion, adjusting for the biases induced by different survey items and differential item functioning

across countries, and smoothing over time. While a number of scholars have developed methods

for smoothing single-country time-series of aggregate opinion (e.g Beck 1989; Jackman 2005; Mc-

Gann 2014; Stimson 1991; Voeten and Brewer 2006), none have focused as yet on cross-national

panels of opinion. The contribution of this paper is the development and validation of such a

method. This method will be of interest to scholars of comparative political behavior and com-

parative political economy who would benefit from access to country-year panels of opinions on

policy mood, social values, political culture, and so on.

2. Existing Research on Smoothing Aggregate Public Opinion

Political scientists have long been interested in smoothing estimates of aggregate public opinion

over time. A pioneer in this area is Stimson (1991), who estimated ideology, or “policy mood,”

in the United States between 1956 and 1988. To accomplish this goal, he developed an ingenious

dyad-ratios algorithm. This algorithm rests on the realization that while the level of respondent

agreement varies idiosyncratically across survey items, the change over time in respondent agree-

ment can be compared across items. The dyad ratios algorithm thus uses the ratio of change over
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time to standardize survey items. These ratios are then combined using a factor analysis type pro-

cedure that weighs each item’s ratio of change by the degree to which it correlates with the latent

variable. Finally, the estimates are smoothed over time using an exponential smoother.

The dyad ratios algorithm has been phenomenally popular. Stimson and colleagues have

used it in several major studies of public opinion (e.g. Stimson, Mackuen, and Erikson 1995;

Erikson, Mackuen, and Stimson 2002) and scholars continue to use it to this day to estimate

smooth time-series of aggregate opinion (e.g., Baumgartner, De Boef, and Boydstun 2008; Enns

2016). However, two years before Stimson, Beck (1989) provided an alternative, arguably more

theoretically-grounded, approach to smoothing aggregate opinion. He described a model of dy-

namic opinion that included a Kalman filter to smooth over time and a measurement model to

combine multiple items into one opinion series. Indeed, Beck went even further by showing how

the latent opinion estimates could be modeled using a set of covariates. Although he managed to

fit and run such a sophisticated model using GAUSS software on a “386-based microcomputer”, it

appears that Beck was somewhat ahead of his time. It was the much simpler dyads ratio algorithm

that became popular.

In recent years, methodologists interested in measuring latent aggregate opinion have pro-

posed similar dynamic measurement models to Beck’s (e.g. Green, Gerber, and De Boef 1999).

However, it is really with the rise of Bayesian methods – which not only include prior information

to help estimate and identify complex models, but also provide a highly intuitive framework for

understanding hierarchical and dynamic models – that smoothing aggregate opinion takes off.

Within this Bayesian approach, Jackman (2005) provides an early, seminal contribution,

smoothing opinion over an electoral campaign by modeling observed polling marginals as true

opinion plus random error. True opinion is additionally adjusted for biases induced by the methods

used by survey firms, and is furthermore allowed to evolve over the campaign using a random walk

error process. Voeten and Brewer (2006) estimate US public approval of the 2003 war in Iraq using

a model developed from Jackman’s framework. In addition, following Beck (1989), they include

item intercepts and slopes to allow opinion to be combined from different survey questions.
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While Voeten and Brewer (2006) and Jackman (2005) use linear models of the proportion of

respondents who offer a particular opinion, Linzer (2013) instead uses a binomial specification to

model the number of respondents offering a particular opinion. This neatly allows sampling error to

be included in the estimates, but also allows survey items where almost all or almost no respondents

agree (and thus proportions close to 0 or 1) to be more accurately modeled. McGann (2014) follows

suit, but additionally includes a two-parameter item response theory (IRT) measurement model to

estimate item effects. He further includes a beta prior on the binomial probability parameter to

capture the overdispersion in survey data introduced by idiosyncrasies peculiar to survey data such

as varying survey modes, methods of sampling, and so on.

This literature has focused on estimating an opinion time series within a single country.

No researchers have attempted to extend these models to measure opinion across countries as well

over time. Caughey and Warshaw (2015), however, have extended methods of smoothing opinion

time-series in a related direction by developing a “dynamic group IRT model” (DGIRT) for esti-

mating opinions over time in small subnational groups. To do so, they combine a binomial IRT

model, the method of multilevel regression and poststratification (MRP; Park et al (2004)), and a

dynamic linear model of the latent opinion. Their model allows one to estimate opinion within

small demographic and geographic groups and over time. It also allows for differing survey ques-

tions and surveys that are fragmented over time and space. The model is very powerful, but also

very complicated.1 Although the DGIRT model could be used to measure opinion across coun-

tries using complete national samples, much of the complexity comes from allowing the analyst to

estimate subnational opinion with small and unrepresentative samples.

This paper instead focuses specifically on estimating country-year panels of opinion. The

assumption is that nationally-aggregated survey marginals are drawn from representative samples –

or have been weighted to approximate representativity. The challenge is then to accurately measure

opinion despite gaps in time, space, and survey item. The models for doing so are developed and

presented in the next section.

1Indeed Caughey and Warshaw (2015) note in a footnote that one of their models took “several weeks” of com-
puting time to fit. In contrast, the models presented here all converge in one to three hours on a desktop computer.
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3. Modeling Cross-National, Time Series Latent Opinion

What do we require of a model of cross-national, time-series opinion? There are four guiding

principles from existing research. First, we should treat opinion as an unobserved, latent trait, with

observed survey responses being a function of these latent country-year traits. In effect we should

set up a measurement model with latent estimates of country by time, as well as item-specific

parameters to adjust the location and scale of the link between observed responses and aggregate

opinion (Beck 1989; Caughey and Warshaw 2015; McGann 2014; Voeten and Brewer 2006).

Second, while classic measurement models – whether in the factor analytic or IRT traditions

– can be thought of as estimating latent variables by smoothing over (for example) survey items,

Beck (1989), Voeten and Brewer (2006), and Caughey and Warshaw (2015) extend these models

by additionally smoothing over time. I will follow suit by incorporating a model of temporal

dynamics.

Third, we should model the number of respondents – rather than the derived proportion or

percentage – offering an affirmative (or dissenting) opinion. This implies a binomial model linking

observed responses to the measurement model (Linzer 2013; Caughey and Warshaw 2015). Such

a specification allows for sampling error to be included. We can also extend this formulation by

using a beta-binomial link, which includes an additional dispersion parameter (McGann 2014).

This includes additional uncertainty in the estimates beyond mere sampling error.

Finally, since we are interested in modeling opinions across countries, we ought to adjust

for heterogenous item functioning, which is unfortunately quite prevalent in cross-national public

opinion (Stegmueller 2011). I consider ways of accomplishing this below.

Following these principles, I develop six models of cross-national, time-series opinion (a

summary of the six models is provided in Table 1). These models are tested using a real-world

application: estimating support for democracy. Using both internal and external validation, I test

the accuracy of the six sets of point estimates and variance estimates, and select a preferred model.2

2Replication data and code are available on the Political Analysis dataverse. See Claassen (2018).
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3.1. Distributions

The observed number of respondents yikt offering an affirmative opinion (e.g. in support of democ-

racy) for each country i, year t, and survey item k, is modeled as a binomial distributed count:

yikt ∼ Binomial(sikt , πikt). (1)

There are then two ways of proceeding. In the simpler binomial specification I model the

probability πikt of offering an affirmative opinion directly, as a function of item and country-time

effects (e.g. Caughey and Warshaw 2015; Linzer 2013). However one could also follow McGann

(2014) in utilizing a beta prior on the probability parameter. This allows for some additional

dispersion in the observed survey responses, which captures sources of error over and above simple

sampling error. Indeed, since public opinion survey data are afflicted by numerous sources of

errors – including methods of questionnaire translation and respondent selection, survey mode,

and interviewing style (e.g., Weisberg 2005) – allowing for overdispersion in survey responses

appears to be a prudent course of action.

I thus use the simpler binomial specification for three of the six models, and the binomial

with beta prior, or beta-binomial, for the other three. The beta-binomial specification then also

includes the following step:

πikt ∼ Beta(αikt , βikt) (2)

The two shape parameters of the beta distribution can be reparameterized to an expectation param-

eter, η , and a dispersion parameter, φ :

αikt = φηikt (3)

βikt = φ(1−ηikt) (4)
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3.2. Item and Country Parameters

In the case of the binomial specification, the probability parameters are modeled directly as a

function of the latent country-year estimates and item parameters; in the case of the beta-binomial,

the beta expectation parameter receives this measurement model. I utilize three variations of this

measurement model. The first simply includes country-year latent effects and item intercepts (the

beta-binomial version is shown here):

ηikt = logit−1(λk +θit) (5)

λk ∼ N(µλ , σ
2
λ
) (6)

The item intercepts λ adjust the location of the latent opinions for the idiosyncrasies of each survey

item. They can thus be thought of as item bias effects. These intercepts are modeled hierarchically,

with an expectation µλ and variance σ2
λ

estimated from the data. This hierarchical specification

shrinks the item intercepts towards the mean to the extent that data are scarce, which guards against

small within-item samples producing extreme estimates.

Survey items are, moreover, likely to have differing effects in different countries, a problem

known as lack of equivalence (Stegmueller 2011). For example, one method of measuring support

for democracy is to ask respondents for their opinions about having the army govern the country.

Respondents in countries with a history of military rule are likely to respond quite differently than

respondents in countries without such a history.

Fortunately, each item is asked multiple times in a given country. When replicates of items

across units (respondents or countries) are available, analysts may also include parameters captur-

ing item by unit bias (Skrondal, and Rabe-Hesketh 2004). The second version of the measurement

model thus includes a set of item by country effects δ to capture the heterogeneity in item bias
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across countries:

ηikt = logit−1(λk +δik +θit) (7)

δik ∼ N(0, σ
2
δ
) (8)

These item-country intercepts are also modeled hierarchically, which is helpful as the ob-

served data are especially likely to be sparse when divided by country as well as item. By treating

both the item and item-country effects as varying intercepts, or random effects, they can be inter-

preted as error terms (McGraw and Wong 1996). This lends an intuitive understanding to their

role in the measurement equation: the λ effects can be seen as the item-level residuals, while the

δ effects can be seen as the item-country level residuals, leaving θ as the item and item-country

adjusted estimates of latent support for democracy.

Finally, measurement models often also include item slopes, known as factor loadings in

the factor analysis framework and discrimination parameters within the IRT approach. Whatever

the name, item slopes allow the strength of the relationship between observed responses and latent

traits to vary across the items. Where an item shows a weaker relationship with the latent variable,

it “loads” to a lesser extent than items showing a stronger relationship. I extend the second model

by incorporating such item slopes γ:

ηikt = logit−1(λk +δik + γkθit) (9)

With both varying intercepts and varying slopes, this is a type of hierarchical (generalized)

linear model, with observed responses nested within both items and countries (ignore time for the

moment). As such, it is desirable to model the item-level equations jointly using a bivariate normal

(Gelman and Hill 2007; Skrondal, and Rabe-Hesketh 2004). This allows item intercepts and slopes
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to be correlated, with the ρ parameter capturing the degree of covariation.

λk

γk

∼ N


µλ

µγ

 ,

 σ2
λ

ρσλ σγ

ρσλ σγ σ2
γ


 (10)

With three versions of the measurement model coupled with the two response distributions

(binomial and beta-binomial), there are six models in total. These are outlined in Table 1.

Table 1. Models

Model Response Item Item-country Item
number distribution intercepts intercepts slopes

(λ ) (δ ) (γ)

1 Binomial X
2 Binomial X X
3 Binomial X X X
4 Beta-binomial X
5 Beta-binomial X X
6 Beta-binomial X X X

3.3. Dynamic Effects

Finally, for all six models, the latent opinion estimates are allowed to evolve over time. Doing

so smooths over any gaps in each national time series. Following previous research on modeling

dynamic latent traits (e.g. Caughey and Warshaw 2015; Jackman 2005), the temporal evolution

of latent opinion is specified as a simple local-level dynamic linear model (Durbin and Koopman

2012), where the current level of latent opinion is a function of the previous year’s level plus some

random noise:

θit ∼ N(θi,t−1, σ
2
θ ) (11)

The variance of the noise term, σ2
θ

, is held constant across countries and estimated from the data.
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3.4. Identification and Priors

To identify latent trait models, analysts must impose restrictions on the location, scale, and perhaps

also the direction (or sign) of the parameters (Bafumi et al 2005). Models without item loadings

are simpler in this respect as they only require location restrictions. These models were identified

by fixing the first item intercept λ1 at a value of 1. Models with item loadings (models 3 and 6)

additionally require that the scale and direction of the parameters be identified. To do so, I fix the

expectation of the item intercepts µλ to 0.5, and the expectation of the item slopes µγ to 1.3 The

direction of the item slopes γ is then identified by constraining these to be positive.

The estimated variances are given weakly-informative half-Cauchy priors: σλ ∼ C+(0, 2)

(and similarly for σδ , σγ , and σθ ). For the models including item slopes as well as intercepts,

the variance-covariance matrix of item intercepts and slopes is decomposed into the product of

the variances for each vector of parameters and a 2× 2 correlation matrix, with ρ being the esti-

mated correlation (Stan Development Team 2017). This correlation matrix is given an LKJ prior

(Lewandowski et al 2009).

The expectation of the item intercepts µλ (for models 1, 2, 4, and 5) is given a N(1, 2)

prior while the dispersion parameter φ (for the beta-binomial models), is given a Γ(4, 0.1) prior.

Finally, for all models, the initial value of latent opinion for each country, θi1, receives a N(0, 1)

prior.

4. Application: Support for Democracy

4.1. The Concept of Support for Democracy

Political theorists since Aristotle have long argued the presence or absence of a democratic polit-

ical system is somehow related to the attitudes and orientations of the citizenry. Interest in this

theory continued into the modern era, leading to the development of the concept of political cul-

ture. According to scholars such as Inglehart and Welzel (2005) and Lipset (1959) democracy

3For these models λ1 was not constrained.
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is legitimate – and stable – when it is “congruent” with the political culture. Put another way,

democracy requires a democratic political culture.

There are in fact two distinct conceptualizations of democratic political culture. According

to the first, citizens provide explicit support for democracy when they prefer a democratic regime to

some non-democratic alternative (e.g. Fuchs-Schündeln and Schündeln 2015; Mattes and Bratton

2007; Norris 1999; Rose, Mishler and Haerpfer 1998). Here, democracy is legitimate because it is

believed to be preferable by the public. According to the second conceptualization, citizens pro-

vide implicit support when they subscribe to a broader set of values emphasizing trust, tolerance,

and freedom (Inglehart 2003; Inglehart and Welzel 2005). Here, democracy is legitimate because

it is consistent with citizen’s deeper values and strivings. Although both kinds of democratic po-

litical culture have been advocated as providing support for democracy, or perhaps even spurring

democratization, the focus of this paper is on the first kind, explicit support for democracy, often

simply referred to as “support for democracy.”4

4.2. Data on Support for Democracy

I collected all available nationally-aggregated responses to questions on support for democracy

that were gathered by cross-national survey projects utilizing representative national samples of

citizens. Data are collected from eleven survey projects including the World Values Survey and all

the Global Barometer projects (see online supplementary materials). Surveys with relevant items

were fielded in 144 countries over a 24 year period between 1992 and 2015. There are 3,014

nationally aggregated responses, obtained from 1,165 separate national survey samples.5

These data epitomize the challenges of measuring cross-national time-series opinion. First,

they are sparse over time and space. If the focus is restricted to the 132 countries that were surveyed

at least twice on explicit support over the years from 1992 to 2015, there is a potential dataset

4Scholars such as Canache, Mondak, and Seligson (2001) and Norris (1999) demonstrate that support for democ-
racy must be distinguished from the concept of “satisfaction with democracy,” measures of which are also widespread
in comparative survey projects. I follow suit.

5World Values Survey data were excluded for some countries and items due to known problems in some cases,
and suspicious response levels in others. See Kurzman (2014) for further discussion and the online supplementary
materials for details.

11



Figure 1. Sparseness of Aggregate Support for Democracy By Country, Year, and Survey Item
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The first panel shows the availability of at least one survey item across a selection of eight countries and all
24 years. The other three panels indicate the availability of data for the three most common question themes.
The wording of all survey items is included in the online supplementary materials.

of 3,168 country-years. However, surveys were conducted in just over a third of these country-

years. I present a visualization of the sparseness of this data in Figure 1. The top panel shows the

fragmented supply of support for democracy measures across time for eight countries, selected for

variance across regions and in availability of data.

To take the example of South Africa, questions on explicit support for democracy were

asked in 11 national surveys over the period in question: by the World Values Survey in 1996,

2001, 2006 and 2013, the AfroBarometer project in 1999, 2003, 2005, 2008 and 2012, and Pew

Global Attitudes in 2002 and 2013. Data on democratic support are thus only available for ten out

of the 24 years in South Africa – and this is a case that has above average survey coverage.

Second, to compound the problem, researchers have not settled on standard survey ques-

tions for measuring democratic political culture. Indeed, there is an extraordinary diversity of

approaches to measuring support for democracy: as many as 37 different survey questions clus-

12



tered within nine broad approaches to question wording.6 The lower panels of Figure 1 show the

supply of support for democracy data within the three most prominent of of these measurement

approaches. Once disaggregated in this way, the data are clearly even more sparse across the

country-year matrix.

To continue the South African example, although 11 surveys fielded questions on support

for democracy in this country, each used several different items, resulting in 41 data points in total.

These 41 data points are however fragmented across seven different questions. If one were to focus

on a single survey question to obtain a meaningful time-series, most of the data would have to be

discarded. Even the most popular survey item, the question asking respondents the extent to which

they support or oppose having a strong but undemocratic leader, is asked only in ten out of the 24

years.

As such, once available data on support for democracy are divided by survey item as well

as country and year, they begin to look very sparse indeed. If survey questions from every one of

the nine major approaches to question wording were asked annually in each country, there would

be 28,512 country-level data points. Yet, only slightly more than ten percent of these potential

item-country-year cells actually feature data. Classical methods of measuring public opinion using

multiple items, such as factor analysis of the complete cases, are simply not an option here. The

data are too sparsely scattered across survey item, country, and year. Indeed, there are no complete

cases unless one ignores the temporal dimension.

Given these limitations, analysts have tended to abandon any temporal variation in support

for democracy (and other measures of cross-national opinion), focusing instead on cross-sectional

variation. I aim to overcome these limitations by estimating support for democracy over 132 coun-

tries and over 24 years, creating a full time-series, cross-sectional dataset of 3,168 observations.

6I took a conservative route in categorizing survey items by always classing two items as distinct when they were
fielded by different project even if their wording appeared to be identical. Doing so allows the item effect parameters
to capture variation induced both by question wording and by idiosyncrasies in the methodology of the various survey
projects.

13



4.3. Estimation

The six models are estimated using Bayesian Markov-Chain Monte Carlo (MCMC) methods via

Stan software, which implements Hamiltonian Monte Carlo sampling (Carpenter et al 2017; Stan

Development Team 2017). Four parallel chains were run for 1,000 samples each, with the first 500

samples in each chain used for warm up, and discarded, and the remaining 2,000 samples of the

posterior density thinned by half and analyzed further. This number of iterations proved to be more

than sufficient for convergence, with the R̂ diagnostic reaching a value of between 0.95 and 1.05

for all parameters in all models.

4.4. Preliminary Results

Before testing the accuracy of the six models and verifying the validity of the estimates, I include

a table (Table 2) showing parameter estimates (from model 5) and observed response proportions

for three countries – the US, South Africa, and China – over five years – 2005 to 2009. This table

includes labels for country, year, and survey item; parameter estimates for item bias, item-country

bias, and the country-year latent opinion; and both observed and simulated response proportions.

By employing a “dataset” perspective, Table 2 helps explicate the modeling framework

employed in this paper. In particular, in certain countries and years (e.g., the first row in the

table, corresponding to the United States in 2005), no public opinion surveys asking support for

democracy questions were fielded. The modeling framework, however, can estimate opinion even

in years where no survey measures were available. The table also shows that other country-year

combinations (such as the US the following year, in 2006) benefit from having several observed
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survey responses.

Table 2. Estimated parameters and observed data for three countries and five years

Project & Country Year Country Item Item- Obs’d. Sim’d.
item type latent bias country prop. prop.

est. bias

(k) (i) (t) (θit) (λk) (δik)
(

yikt
sikt

) (
ỹikt
sikt

)
USA 2005 .36

WVS–Eval. dem. 2006 .29 1.74 −.53 .82 .83
LAPOP–Churchill 2006 .29 .83 .32 .93 .82
WVS–Army rule 2006 .29 1.13 .24 .84 .85
WVS–Strong leader 2006 .29 .32 −.02 .65 .66
WVS–Import. dem. 2006 .29 2.09 −.46 .85 .88
LAPOP–3 statements 2006 .29 1.00 .10 .75 .81

2007 .21
LAPOP–Churchill 2008 .18 .83 .32 .77 .80
LAPOP–3 statements 2008 .18 1.00 .10 .79 .79
Pew–Strong leader 2009 .22 .55 −.48 .53 .56

AfroB–1 party rule South 2005 −.26 1.06 −.15 .66 .65
AfroB–Army rule Africa 2005 −.26 1.00 .25 .72 .72
AfroB–Strong leader 2005 −.26 1.30 −.23 .64 .68
AfroB–3 statements 2005 −.26 .70 .20 .65 .65
WVS–Eval. dem. 2006 −.32 1.74 −.10 .86 .80
WVS–Army rule 2006 −.32 1.13 −.34 .60 .63
WVS–Strong leader 2006 −.32 .32 .02 .50 .52
WVS–Import. dem. 2006 −.32 2.09 .14 .91 .88

2007 −.38
AfroB–1 party rule 2008 −.38 1.06 −.15 .63 .63
AfroB–Army rule 2008 −.38 1.00 .25 .67 .70
AfroB–Strong leader 2008 −.38 1.30 −.23 .63 .67
AfroB–3 statements 2008 −.38 .70 .20 .67 .63

2009 −.38

China 2005 −.52
AsiaB–Army rule 2006 −.75 .52 −.09 .46 .48
AsiaB–Strong leader 2006 −.75 .52 .92 .83 .71
AsiaB–Eval. dem. 2006 −.75 2.03 .75 .93 .90
WVS–Eval. dem. 2007 −.74 1.74 −.35 .61 .66
WVS–Army rule 2007 −.74 1.13 −.60 .38 .45
WVS–Strong leader 2007 −.74 .32 .14 .42 .43
WVS–Import. dem. 2007 −.74 2.09 .01 .78 .79
AsianB–3 statements 2008 −.67 .54 .26 .54 .52
AsianB–Army rule 2008 −.67 1.38 −.25 .57 .59
AsianB–Desire for dem. 2008 −.67 2.05 −.45 .65 .71
AsianB–Dem. suitable 2008 −.67 1.77 −.19 .72 .69
AsianB–Strong leader 2008 −.67 1.17 .03 .61 .61

2009 −.61

Parameter estimates are drawn from those obtained using Model 5 and are unstandardized.
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Although the main focus of the paper will be on the latent country-year estimates θ , Table

also 2 allows readers to compare observed response proportions (yikt/sikt) with those simulated

from the model, contingent on the other parameters (ỹikt/sikt). Doing so helps demonstrate that

the modeling framework can be compared to simple linear or generalized linear models, where an

outcome (here, yikt) is modeled as a function of some parameters and/or data. Simulated response

proportions are also used to test and compare the accuracy of the six models, which is the task we

turn to next.

5. Validation Tests

5.1. Internal and External Validation

In this section, I compare the accuracy of the latent opinion estimates obtained from each model,

both in comparison to an absolute standard, and in comparison to each other. The first test is a test

of the predictive accuracy of the models when using the same data that were used to fit the model,

which Hastie, Tibshirani, and Friedman (2009) refer to as internal validation. In particular, the

mean absolute error (MAE) is used to measure the average discrepancy between the observed pro-

portions of respondents offering a pro-democratic attitude yikt/sikt , and the simulated proportions

ỹikt/sikt :

MAE =
1
J

J

∑
j∈ikt

∣∣∣∣yikt

sikt
− ỹikt

sikt

∣∣∣∣ (12)

Internal validation is simple to conduct, but favors more complex models. Reliance on

metrics of internal validation could therefore lead to the selection of a model that overfits the

dataset at hand. Analysts thus instead use information criteria, which attempt to estimate out-of-

sample predictive error by penalizing models as their parameters increase in number. An good

choice of information criterion for Bayesian MCMC methods is the “Leave-One-Out” (LOO-IC)

information criterion, which Vehtari, Gelman, and Gabry (2017) argue to be superior to alternatives

such as the Deviance and Watanabe-Akaike information criteria. I follow their advice in including

Stan code for estimating the LOO-IC for each of the six models, and report these results below.
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Better still, however, is to select models using data that are not also used to fit the model,

which is known as external validation (Hastie, Tibshirani, and Friedman 2009). To do so, the

dataset of national opinions is randomly split into an 75% training set and a 25% test set. The

six models are fit to the training set, and the resulting parameter estimates are used to predict the

national proportions offering a supportive (i.e. pro-democratic) response for each of the 744 survey

items comprising the test dataset. I again calculate the mean absolute error, but now in predicting

the error in the held-out, test dataset.

Finally, I examine the accuracy of the estimates of uncertainty produced by each models by

calculating their credible interval coverage (CIC). To do so, I find – for each model – the percentage

of the J = 744 observed survey proportions that are included in the 80% credible interval of the

corresponding simulated survey proportions (ỹ j/s j):

CIC =
100

J

J

∑
j=1

[
y j

s j
∈ CI80

(
ỹ j

s j

)]
(13)

To provide a baseline comparison for the validation tests, I also fit Caughey and Warshaw’s

(2015) DGIRT model to the training dataset and used it to predict responses on the test set.7 Three

naı̈ve methods of estimating the out-of sample proportions are also included as additional baselines.

In the first of these, I use the country mean proportions from the training dataset to predict the

response proportions in the test set. Second, I use the item mean proportions, and third, I use the

grand mean response proportion across the entire training dataset.

The results of these internal and external validation tests are displayed in Table 3. Begin-

ning with the tests of internal validation, three findings are apparent. First, all six models offer

a substantially better fit to the observed proportions supporting democracy than the baseline esti-

mates. Indeed, taking the country means as a baseline, the most accurate models offer up to 79%

reduction in mean absolute error in tests of internal validation. This is hardly surprising given the

difficulty in estimating the proportion responding affirmatively to a particular support for democ-

7I used the dgirt() function provided in the dgo package for R, which is created by Caughey and Warshaw and
allows analysts to run the DGIRT model without having to delve into Stan.
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racy survey item in a particular country and year knowing nothing other than the average proportion

responding affirmatively in that country across all years and items. Yet it does show already that

these models are adding value.

Table 3. Internal and External Validation Tests

Internal Validation Tests External Validation Tests

Mean % Leave-One- Mean % 80 %
Absolute Improve- Out Absolute Improve- Credible

Error ment in Information Error ment in Interval
Model (MAE) MAE Criterion (MAE) MAE Coverage

1 .050 52.4 143676 .082 26.2 17.1
2 .023 78.3 60561 .070 37.1 39.4
3 .022 79.0 58849 .072 34.4 37.9
4 .062 40.7 35956 .070 36.3 38.2
5 .032 69.5 34375 .061 44.9 60.3
6 .032 69.9 34354 .062 44.3 60.8

DGIRT .088 20.0 17.5

Country means .105 .110
Item means .095 8.9 .094 15.3
Grand mean .129 −22.9 .125 −13.2

Internal validation uses the same data for model fitting and validation. External validation creates two
separate datasets: models are fit to the 75% training set and validated using the 25% test (or hold-out) set.
Percent improvement in MAE is a comparison between model MAE and country-mean MAE. The DGIRT
model is proposed by Caughey and Warshaw (2015) and implemented in the dgo R package.

Perhaps more interesting is the second finding, which is that models 1 and 4 – which include

item intercepts but not item slopes or item-country intercepts – offer substantially worse fit than

the other, more complex models. The error rate is roughly halved when adding item-country

intercepts (which are incorporated in models 2, 3, 5, and 6). This result is confirmed by the LOO-

IC measures. Although the LOO-IC penalizes the log-likelihood for the number of estimated

parameters, models 2 and 3 offer a better fit than model 1, as do models 5 and 6 when compared

with model 4.8 There is however little to distinguish between the models with item slopes (3 and

6) and the models without (2 and 5).
8The use of different distributions means that one cannot compare the LOO-IC across the binomial and beta-

binomial specifications.
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I now turn to the external validation tests. These offer a better means of gauging model

fit because the models are estimated and tested using different datasets. Focusing first on the

MAE results, one can see that the six models continue to offer improvements in accuracy when

compared with the baseline, country mean estimates. The difference, however, has diminished

when compared with the internal validation MAE results. Part of the gap between the model

estimates and the baseline estimates were thus due to the models overfitting the data. Nevertheless,

any of the six models offers a gain in accuracy over the baseline fit, with up to 45% reduction in

MAE.

In addition, any of the models developed in this paper perform at least as well in predicting

out of sample survey responses, and usually better, than Caughey and Warshaw’s (2015) DGIRT

model. The DGIRT model is about as accurate as model 1, which uses a binomial specification

and includes only item intercepts. As mentioned, although the DGIRT model can, in principle,

be used to estimate cross-national opinion, it was developed instead for estimating subnational

opinion. Analysts face differing challenges in these two contexts: when estimating subnational

opinion (but not cross-national opinion), samples are small and unrepresentative; when estimating

cross-national opinion (but not subnational opinion), items may not be equivalent across countries.

These results demonstrate that analysts should use models designed for the idiosyncrasies of cross-

national opinion when estimating cross-national opinion.9

These external validation tests also confirm that the simpler, item-intercept only models

(models 1 and 4) are the least accurate. The additional complexity added by including item-country

intercepts (models 2 and 5) produces a meaningful reduction in MAE of around one percentage

point when compared with the item-intercept only models. In contrast, adding item slopes or factor

loadings does not improve predictive accuracy at all.

In addition, the external validation tests show that the beta-binomial (models 4–6) spec-

ifications are slightly more accurate than the corresponding binomial models (1–3), which con-

9An additional consideration is the length of time that is required to estimate such models. As Caughey and
Warshaw (2015) point out, fitting the DGIRT model is time-consuming. It took me 56 hours to fit this model to the
training dataset, compared with between one and two hours for each of my six models.
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trasts with the results of the internal validation tests. The additional dispersion added by the beta-

binomial enhances the accuracy of the estimates, perhaps by capturing some of the non-sampling

error endemic in public opinion data.

Finally, on to tests of credible interval coverage. These tests measure the accuracy of the

estimates of uncertainty produced by each model. A model with accurate uncertainty estimates

should have similar empirical and nominal levels of credible interval coverage. Since I use 80%

credible intervals, one should expect 80% empirical coverage. Coverage substantially below this

nominal level shows overly optimistic standard errors; coverage substantially above this level in-

dicates overly conservative standard errors.10

The results indicate that the uncertainty estimates generated by the six models are all too

optimistic. The standard errors, in other words, are too small. None of the rates of empirical

credible interval coverage come appreciably close to the nominal level of 80%. There are of

course, many sources of error in cross-national public opinion data (e.g., Weisberg 2005), and I

have explicitly modeled only a few. Moreover, some sources of error – such as the translation

problems in the World Values Survey identified by Kurzman (2014) – are impossible to model.

However, the beta-binomial specification, which includes an overdispersion parameter, φ ,

proves to have substantially more accurate uncertainty estimates than the simpler binomial spec-

ification. While the binomial CICs are very poor, ranging from 17 to 39%, the beta-binomial

CICs are much closer to nominal 80% level, ranging from 38 to 61%. Including item-country

bias effects also produces substantially better credible interval coverage, in both the binomial and

beta-binomial specifications. Models 5 and 6, with both item-country intercepts and beta-binomial

distributions, have the most accurate estimates of uncertainty of all.

Weighing up all the evidence from these tests of external validation, it would appear that

the models which use beta-binomial specifications and include item-country effects (models 5

and 6) are the most accurate. These models show similarly low levels of error in predicting survey

responses in the test dataset and have similar credible interval coverage. Model 5 has the advantage

10For example, an estimated interval between negative and positive infinity would show 100% coverage but would
otherwise be completely uninformative.
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of being simpler to code and run than model 6, as it does not require the covariance of the item

effects to be estimated. Model 6, however, might be useful for situations where analysts are unable

to benefit, as we have here, from prior research investigating the reliabilities (or factor loadings) of

potentially relevant survey items.

5.2. Construct and Convergent Validation

The external validation tests have demonstrated that my modeling framework – and in particu-

lar, the beta-binomial specification with item-country intercepts – is fairly accurate in predicting

observed survey responses in a hold-out sample. To further build confidence in this approach I

examine, in this subsection, whether the latent estimates correspond to the theoretical construct of

support for democracy. I examine, in other words, whether the country-year measures of support

for democracy behave as previous scholars have suggested this variable should behave.

In particular, I consider the cross-national distribution of estimated support for democracy

at certain points in time and the over-time evolution of support for democracy for certain countries.

These analyses will permit some discussion of the construct validity of the estimates. I also exam-

ine the correlation, at certain points in time, between cross-national point estimates of support for

democracy and cross-national experience with democracy. These correlations constitute a test of

the convergent validity of the measures. The analyses that follow utilize estimates obtained from

model 5.

To assess the convergent validity of the model, I examine the covariation between support

for democracy and cumulative experience with democracy at two points in time, 2015 and 2005.

Cumulative experience with democracy is the sum of the democracy scores for a given country

between the year in question and 1950, with each year’s score discounted by two percent.11 Schol-

ars have previously demonstrated that supportive attitudes toward democracy are linked with the

length of time a country has been democratic (Fuchs-Schündeln and Schündeln 2015; Mattes and

Bratton 2007). Scholars have also argued – although perhaps not yet empirically demonstrated

11I use the “Liberal democracy index” from the Varieties of Democracy project (Lindberg et al 2014)
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Figure 2. The Relationship Between Support for Democracy and Democratic Experience
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– that support for democracy helps democratic institutions to survive (Lipset 1959; Norris 1999;

Rose, Mishler and Haerpfer 1998). Since either of these processes would lead to a correlation

between support for democracy and democratic experience, this can be interpreted as a test of the

convergent validity of the estimates. To carry out this test, I plot point estimates of support for

democracy against democratic experience in both 2015 and 2005 (Figure 2).

In both 2005 and 2015, a robust and positive relationship is evident between the two vari-

ables (in 2005 the Pearson’s correlation is 0.57; in 2015, 0.50). The more extensive a country’s

experience with democracy, the higher the support that its citizens express for a democratic versus

an autocratic system. These correlations show that the estimates of latent opinion do in fact behave

as theories of democratic political culture have suggested.

Moving on to construct validity, I examine the estimated levels of support for democracy

for a selection of eight countries, which were selected as representing a range of levels of support

as well as some interesting dynamics. These are displayed in Figure 3: each plot shows the latent
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Figure 3. Estimated Support for Democracy for 8 Countries over 24 Years
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estimates for a particular country over 24 years.12 The darker line indicates the mean value of

θ in each year; the lighter lines indicate 200 random draws from the posterior density of θ , and

collectively show uncertainty in the latent estimates. Finally, the observed data are also displayed

on these plots using points.13

First, when data are abundant in a particular country (e.g. Venezuela), the estimates are

fairly precise (the y-axis is calibrated on the z-score scale). When data are scarce (e.g. Egypt and

China before 2000), the estimates are noisier, and become increasingly so the larger the gap there

is in the data. The beta-binomial model is fairly aggressive in smoothing across time compared

with the binomial specification (not shown), which produces a more jagged, rapidly changing

pattern of opinion. Such a pattern is not particularly plausible for a slow-moving orientation such

as democratic political culture (Inglehart and Welzel 2005), which suggests again that the beta-

binomial specification is preferable.

Second, established democracies such as Sweden show high levels of support for democ-

racy. This is consistent with previous research focusing on particular subsets of the available

survey data (e.g. Klingemann 1999). An important exception to this pattern are the Anglophone

democracies, such as the United States, where declining support for democracy is evident. This is

consistent with recent research by Foa and Mounk (2016).

Third, newer democracies show divergent trends. I examine a pair of cases from Southern

Africa: Botswana has high and increasing support for democracy, which echoes previous case

study research (Hjort 2009). In contrast, Botswana’s neighbor, South Africa, shows fairly low (and

declining) support, which resonates with earlier survey research (Gibson 2003).

Finally, one can see that countries with a long history of autocratic rule, such as China and

the Ukraine, have low levels of support, as existing research on authoritarian legacies would lead us

to expect (Fuchs-Schündeln and Schündeln 2015; Rose, Mishler and Haerpfer 1998). Moreover,

12Plots displaying the full set of opinion time-series for all 132 countries are included in the online supplementary
materials.

13The observed data (which are national proportions offering support for democracy) are measured on a different
scale to the latent estimates (which are unit-normal standardized). I thus standardized the observed responses by
centering by survey item and dividing by the standard deviation of all responses. This places the observed data on
approximately the same scale as the latent estimates.

24



in Egypt and Venezuela one can see public support for democracy reacting to political events,

albeit in divergent ways. Venezuelan support for democracy steadily increased after Chavez began

dismantling democratic checks and balances in 2000. In contrast, Egyptians reacted to the tumult

of the Arab Spring in 2010 by turning away from democracy in the years that followed.

5.3. Item Analysis

Finally, I examine the item parameters in more detail. Doing so will permit further discussion

of the validity of the estimates. Moreover, the fact that item analysis is even possible illustrates

another advantage of my modeling approach. I use estimates from model 6, which includes item

slopes, for this section.

This analysis will focus on the item characteristic curves (ICCs), which are plotted in Fig-

ure 4. ICCs display the the relationship between the proportion of a national sample responding

supportively toward democracy (y-axis) and the latent estimates of support (x-axis). The vertical

alignment of the curves is governed by the item intercepts λ , while the steepness of the curves is

governed by the item slopes γ . To aid in interpretation, I group the items by their survey project,

and use varying shades of grey and line types to identify the main question wording approach.

Turning to Figure 4, one can see that all 37 items display a positive relationship between

the latent quantity and the observed responses. All items, in other words, have positive slopes. In

addition, most items have slopes of similar magnitude. These are welcome findings, as they indi-

cate that the included survey items do indeed measure the latent construct. It is not a particularly

surprising finding, however, as items were selected based on the results of previous analyses of mi-

crolevel survey data (e.g. Klingemann 1999; Mattes and Bratton 2007; Rose, Mishler and Haerpfer

1998). Items that bore some superficial resemblance to support for democracy, but which did not

display a deeper empirical relationship with this latent variable were not included in the analysis

in the first place.14

There are nonetheless a few items with weaker slopes and therefore more tenuous relation-

14The generally similar magnitudes of the item slopes also might explain why the inclusion of these parameters in
Models 3 and 6 did not improve their accuracy.
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Figure 4. Item Characteristic Curves for All Items, Grouped By Project
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ships with latent support for democracy. First is the “army rule” item from the New Democracies

Barometer and second is the “evaluate democratic political system” item from the AsiaBarometer.

Another three come from the World Values Surveys: the items asking respondents to rate the “im-

portance of living in a democracy,” and to evaluate a “strong leader” and a “democratic political

system.” This latter survey question has previously been criticized as offering only “lip service”

to democracy, rather than deeply-rooted support (Inglehart 2003). In two out of the three survey

projects in which it is employed, this type of question does indeed show a weaker relationship with

latent support for democracy.

In contrast, two widely-used approaches for measuring support for democracy – the “three

statements” and “evaluate army rule” survey questions – perform well across regions and survey

projects. Both have pronounced positive slopes, indicating that such questions allow researchers

to discriminate between respondents who favor democracy and those who do not. Indeed, national

samples show widely-varying levels of agreement with these items as their underlying support for

democracy increases: at low levels of support for democracy (two standard deviations below the

mean), 25% to 40% of respondents tend to offer the democratic responses to the three statements

questions; at high levels (two standard deviations above the mean), around 85% do so.

The main finding from this item analysis is that all included items show a marked, positive

relationship between the latent variable and the observed responses. Indeed, most of the items show

a strong relationship, indicating that they are sound measures of the latent construct of support for

democracy. In addition, the ability to conduct such an item analysis illustrates another advantage

of the proposed modeling framework.

6. Conclusion

Smooth panels of cross-national public opinion would be of great interest to scholars of compara-

tive politics and comparative political economy. Yet assembling and estimating such panels is far

from straightforward because public opinion data are fragmented over space and time and frac-

tured across the numerous survey items that are used to measure any given opinion construct. To
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make matters worse, cross-national opinion data are gathered by a variety of survey projects using

a variety of methodologies and in dozens of languages and countries, threatening their equivalence

across countries.

This paper has proposed, developed, and validated a dynamic Bayesian latent variable

framework for extracting smooth panels from such disparate cross-national opinion data. Despite

the challenges of this task, the six models perform fairly well in tests of external validation. The

most accurate models predict aggregate survey responses that, on average, deviate by six percent-

age points from the observed percentages. These models also provides modestly accurate estimates

of measurement uncertainty, with empirical credible interval coverage falling 20 percentage points

short of the nominal level. I furthermore find that the estimated panel of opinions on support for

democracy display spatiotemporal patterns and associations with other variables that are consis-

tent with previous research, suggesting both construct and convergent validity. Given the problems

endemic in such data, I think that these results warrant optimism.

They also warrant further application, refinement, and testing. For scholars interested in

applying these models to other contexts and to other opinions, I find, firstly, that a beta-binomial

specification should be selected rather than the simpler binomial. Although the binomial provides

out-of-sample predictions that are only slightly less accurate than the beta-binomial, the associated

estimates of uncertainty are far too optimistic. Indeed, as the literature on survey error (e.g.,

Weisberg 2005) has cautioned – and recent election polling failures have demonstrated – public

opinion data include numerous sources of error beyond that due only to sampling. Whether the

beta-binomial more generally allows for better smoothing of opinion time-series than the simpler

binomial is a challenge for future research.

Second, I find that item-slopes or factor loadings do not increase the accuracy of my models

appreciably, but they do have have a diagnostic utility, as demonstrated in the item analysis. More-

over, this particular analysis benefitted from a substantial literature which had already established

the microlevel reliabilities of the included items. Item slopes would be be a helpful model feature

for analysts interested in estimating opinions for topics where such a literature is lacking.
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Finally, adding item by country bias parameters increases the accuracy of both point and

uncertainty estimates. This is hardly surprising because scholars have long warned of the dangers

of assuming that a particular survey item operates in the same fashion across national contexts

(e.g., Stegmueller 2011). However, analysts should note that it is only possible to include such

item-country parameters when item-country replicates – particular items repeated in particular

countries over time – are available.
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